Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Commun Dis Intell (2018) ; 462022 Dec 15.
Article in English | MEDLINE | ID: covidwho-2206058

ABSTRACT

Abstract: This report from the Australian Rotavirus Surveillance Program describes the circulating rotavirus genotypes identified in children and adults during the period 1 January to 31 December 2021. During this period, 521 faecal specimens had been referred for rotavirus G- and P- genotype analysis, of which 474 were confirmed as rotavirus positive. Of these, 336/474 were wildtype rotavirus strains and 138/474 were identified as vaccine-like. Of the 336 wildtype samples, 87.5% (n = 294/336) were identified as G8P[8], and were detected in five of the six jurisdictions that provided samples for the reporting period. Two rotavirus outbreaks, located in the Northern Territory and Western Australia, were also attributed to G8P[8]. As with the 2020 reporting period, a low number of stool samples were received for this reporting period as a result of the COVID-19 pandemic. However, an unexpectedly high proportion of samples with unusual genotypes were identified which were potentially zoonotic in nature, including feline G3, P[9], bovine-like G8, P[14], and porcine-like G4, G6, P[1], and P[6]. Ongoing rotavirus surveillance is crucial to identify changes in genotypic patterns and to provide diagnostic laboratories with quality assurance by reporting incidences of wildtype, vaccine-like, or false positive rotavirus results.


Subject(s)
COVID-19 , Gastroenteritis , Rotavirus Infections , Rotavirus , Animals , Cattle , Cats , Humans , Swine , Rotavirus/genetics , Rotavirus Infections/epidemiology , Pandemics , Gastroenteritis/epidemiology , COVID-19/epidemiology , Northern Territory/epidemiology
2.
PLoS One ; 17(10): e0274793, 2022.
Article in English | MEDLINE | ID: covidwho-2079736

ABSTRACT

BACKGROUND: Wastewater-based epidemiology (WBE) surveillance as an early warning system (EWS) for monitoring community transmission of SARS-CoV-2 in low- and middle-income country (LMIC) settings, where diagnostic testing capacity is limited, needs further exploration. We explored the feasibility to conduct a WBE surveillance in Indonesia, one of the global epicenters of the COVID-19 pandemic in the middle of 2021, with the fourth largest population in the world where sewer and non-sewered sewage systems are implemented. The feasibility and resource capacity to collect samples on a weekly or fortnightly basis with grab and/or passive sampling methods, as well as to conduct qualitative and quantitative identification of SARS-CoV-2 ribonucleic acid (RNA) using real-time RT-PCR (RT-qPCR) testing of environmental samples were explored. MATERIALS AND METHODS: We initiated a routine surveillance of wastewater and environmental sampling at three predetermined districts in Special Region of Yogyakarta Province. Water samples were collected from central and community wastewater treatment plants (WWTPs), including manholes flowing to the central WWTP, and additional soil samples were collected for the near source tracking (NST) locations (i.e., public spaces where people congregate). RESULTS: We began collecting samples in the Delta wave of the COVID-19 pandemic in Indonesia in July 2021. From a 10-week period, 54% (296/544) of wastewater and environmental samples were positive for SARS-CoV-2 RNA. The sample positivity rate decreased in proportion with the reported incidence of COVID-19 clinical cases in the community. The highest positivity rate of 77% in week 1, was obtained for samples collected in July 2021 and decreased to 25% in week 10 by the end of September 2021. CONCLUSION: A WBE surveillance system for SARS-CoV-2 in Indonesia is feasible to monitor the community burden of infections. Future studies testing the potential of WBE and EWS for signaling early outbreaks of SARS-CoV-2 transmissions in this setting are required.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/epidemiology , Feasibility Studies , Humans , Indonesia/epidemiology , Pandemics , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , Sewage , Soil , Wastewater/analysis , Water/analysis
3.
Pediatr Allergy Immunol ; 33(7)2022 07.
Article in English | MEDLINE | ID: covidwho-1927618

ABSTRACT

BACKGROUND: Household studies are crucial for understanding the transmission of SARS-CoV-2 infection, which may be underestimated from PCR testing of respiratory samples alone. We aim to combine the assessment of household mitigation measures; nasopharyngeal, saliva, and stool PCR testing; along with mucosal and systemic SARS-CoV-2-specific antibodies, to comprehensively characterize SARS-CoV-2 infection and transmission in households. METHODS: Between March and September 2020, we obtained samples from 92 participants in 26 households in Melbourne, Australia, in a 4-week period following the onset of infection with ancestral SARS-CoV-2 variants. RESULTS: The secondary attack rate was 36% (24/66) when using nasopharyngeal swab (NPS) PCR positivity alone. However, when respiratory and nonrespiratory samples were combined with antibody responses in blood and saliva, the secondary attack rate was 76% (50/66). SARS-CoV-2 viral load of the index case and household isolation measures were key factors that determine secondary transmission. In 27% (7/26) of households, all family members tested positive by NPS for SARS-CoV-2 and were characterized by lower respiratory Ct values than low transmission families (Median 22.62 vs. 32.91; IQR 17.06-28.67 vs. 30.37-34.24). High transmission families were associated with enhanced plasma antibody responses to multiple SARS-CoV-2 antigens and the presence of neutralizing antibodies. Three distinguishing saliva SARS-CoV-2 antibody features were identified according to age (IgA1 to Spike 1, IgA1 to nucleocapsid protein (NP)), suggesting that adults and children generate distinct mucosal antibody responses during the acute phase of infection. CONCLUSION: Utilizing respiratory and nonrespiratory PCR testing, along with the measurement of SARS-CoV-2-specific local and systemic antibodies, provides a more accurate assessment of infection within households and highlights some of the immunological differences in response between children and adults.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Antibodies, Viral , COVID-19/diagnosis , Child , Humans , Immunoglobulin A
4.
Commun Med (Lond) ; 1: 47, 2021.
Article in English | MEDLINE | ID: covidwho-1860419

ABSTRACT

Background: Children with SARS-CoV-2 infection generally present with milder symptoms or are asymptomatic in comparison with adults, however severe disease occurs in a subset of children. To date, the immune correlates of severe COVID-19 in young children have been poorly characterised. Methods: We report the kinetics of immune responses in relation to clinical and virological features in an infant with acute severe COVID-19 using high-dimensional flow cytometry and multiplex cytokine analysis. Results: Systemic cellular and cytokine profiling show an initial increase in neutrophils and monocytes with depletion of lymphoid cell populations (particularly CD8 + T and NK cells) and elevated inflammatory cytokines. Expansion of memory CD4 + T (but not CD8 + T) cells occurred over time, with a predominant Th2 bias. Marked activation of T cell populations observed during the acute infection gradually resolved as the child recovered. Substantial in vitro activation of T-cell populations and robust cytokine production, in response to inactivated SARS-CoV-2 stimulation, was observed 3 months after infection indicating durable, long-lived cellular immune memory. Conclusions: These findings provide important insights into the immune response of a young infant with severe COVID-19 and will help to inform future research into therapeutic targets for high-risk groups.

5.
Commun Dis Intell (2018) ; 452021 Nov 30.
Article in English | MEDLINE | ID: covidwho-1543154

ABSTRACT

ABSTRACT: This report from the Australian Rotavirus Surveillance Network describes the circulating rotavirus genotypes identified in children and adults during the period 1 January - 31 December 2020. During this period, 229 faecal specimens were referred for rotavirus G- and P- genotype analysis, including 189 samples that were confirmed as rotavirus positive. Of these, 98/189 were wildtype rotavirus strains and 86/189 were identified as vaccine-like. A further five samples could not be determined as wildtype or vaccine-like due to poor sequence reads. Genotype analysis of the 98 wildtype rotavirus samples from both children and adults demonstrated that G3P[8] was the dominant genotype identified for the third consecutive year, identified in 27.6% of samples, followed by G2P[4] in 20.4% of samples. Forty-six percent of rotavirus positive samples received were identified as vaccine-like, highlighting the need to add caution in interpreting rotavirus positive results in children aged 0-8 months. This surveillance period was significantly impacted by the coronavirus disease 2019 ( COVID-19 ) pandemic. The reduction in rotavirus notifications reflected reduced healthcare-seeking behaviour and a decrease in community spread, with 'community lockdowns', school and day-care centre closure and improved compliance with hand hygiene. Fewer stool samples were collected throughout Australia during this period. There was a reluctance to store samples at collaborating laboratories and uncertainties regarding the safety and feasibility of the transport of samples to the central laboratory during the closure of state and territory borders. Systems have now been adapted to manage and send biological samples safely and confidently. Ongoing rotavirus surveillance is crucial to identify changes in genotypic patterns and to provide diagnostic laboratories quality assurance by reporting incidences of wildtype, vaccine-like, or false positive rotavirus results.


Subject(s)
COVID-19 , Gastroenteritis , Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Adult , Australia/epidemiology , Child , Communicable Disease Control , Humans , Population Surveillance , Rotavirus/genetics , Rotavirus Infections/epidemiology , Rotavirus Infections/prevention & control , SARS-CoV-2
6.
Front Immunol ; 12: 741639, 2021.
Article in English | MEDLINE | ID: covidwho-1497078

ABSTRACT

Children have reduced severity of COVID-19 compared to adults and typically have mild or asymptomatic disease. The immunological mechanisms underlying these age-related differences in clinical outcomes remain unexplained. Here, we quantify 23 immune cell populations in 141 samples from children and adults with mild COVID-19 and their PCR-negative close household contacts at acute and convalescent time points. Children with COVID-19 displayed marked reductions in myeloid cells during infection, most prominent in children under the age of five. Recovery from infection in both children and adults was characterised by the generation of CD8 TCM and CD4 TCM up to 9 weeks post infection. SARS-CoV-2-exposed close contacts also had immunological changes over time despite no evidence of confirmed SARS-CoV-2 infection on PCR testing. This included an increase in low-density neutrophils during convalescence in both exposed children and adults, as well as increases in CD8 TCM and CD4 TCM in exposed adults. In comparison to children with other common respiratory viral infections, those with COVID-19 had a greater change in innate and T cell-mediated immune responses over time. These findings provide new mechanistic insights into the immune response during and after recovery from COVID-19 in both children and adults.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , SARS-CoV-2/physiology , Adolescent , Adult , Child , Child, Preschool , Cohort Studies , Convalescence , Environmental Exposure , Family Characteristics , Female , Humans , Immunity, Cellular , Immunologic Memory , Infant , Male , Middle Aged , Young Adult
7.
Pathogens ; 10(3)2021 Mar 17.
Article in English | MEDLINE | ID: covidwho-1148308

ABSTRACT

The introduction of the rotavirus vaccine, Rotarix, into the Fiji National Immunisation Program in 2012 has reduced the burden of rotavirus disease and hospitalisations in children less than 5 years of age. The aim of this study was to describe the pattern of rotavirus genotype diversity from 2005 to 2018; to investigate changes following the introduction of the rotavirus vaccine in Fiji. Faecal samples from children less than 5 years with acute diarrhoea between 2005 to 2018 were analysed at the WHO Rotavirus Regional Reference Laboratory at the Murdoch Children's Research Institute, Melbourne, Australia, and positive samples were serotyped by EIA (2005-2006) or genotyped by heminested RT-PCR (2007 onwards). We observed a transient increase in the zoonotic strain equine-like G3P[8] in the initial period following vaccine introduction. G1P[8] and G2P[4], dominant genotypes prior to vaccine introduction, have not been detected since 2015 and 2014, respectively. A decrease in rotavirus genotypes G2P[8], G3P[6], G8P[8] and G9P[8] was also observed following vaccine introduction. Monitoring the rotavirus genotypes that cause diarrhoeal disease in children in Fiji is important to ensure that the rotavirus vaccine will continue to be protective and to enable early detection of new vaccine escape strains if this occurs.

SELECTION OF CITATIONS
SEARCH DETAIL